
Fast Evolutionary Multi-objective Optimization Algorithm
(FastEMO)

ABSTRACT
This paper proposes a new fast and qualitative algorithm for compu-
tationally intensive Multi-Objective Optimization Problems (MOP),
called FastEMO (Fast Evolutionary Multi-Objective Optimization
algorithm). The aim of this method is to efficiently approximate the
set of Pareto optimal solutions with a very low complexity algo-
rithm, making it possible to use very large population sizes without
sacrificing quality. FastEMO is based on the structure of ASREA
(Archived-Based Stochastic Ranking Evolutionary Algorithm) and
possesses four novel modifications: a replacement strategy with
a decreasing parent population size down to the archive size, a
specific parents selection strategy, a good combination of genetic
operators and an increasing archive size on the last generation.
FastEMO outperforms five other mainstream multi-objective algo-
rithms (NSGA2, NSGA3, ASREA, PAES and ESPEA) both in quality
(using different metrics on 2 and 3 objective ZDT and DTLZ func-
tions) and in runtime, due to its low O(man) complexity.

CCS CONCEPTS
• Theory of computation→ Automated reasoning;

KEYWORDS
Evolutionary Algorithms, Multi-Objective Optimization Problems,
Runtime
ACM Reference Format:
. 2019. Fast EvolutionaryMulti-objective Optimization Algorithm (FastEMO)
. In Proceedings of the Genetic and Evolutionary Computation Conference 2019
(GECCO ’19). ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
Multi-objective optimization is very important in engineering, be-
cause most real-world problems involve multiple conflicting ob-
jectives, where the improvement in one objective function results
in the degradation of another. Many very efficient multi-objective
optimization algorithms have been proposed since David Goldberg
suggested to use the distance to the Pareto front (PF) as a fitness
value for an individual in 1989 [9].
However, computers have changed since this time : they now all
use multi-core CPUs or even many-core GPU cards. The latest RTX
2081 ti NVIDIA card has 4352 cores, each running several threads in
order to be used efficiently. This means that for embarrassingly par-
allel algorithm, such as Multi-Objectives Evolutionary Algorithms

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’19, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

(MOEAs), one can use population sizes of the magnitude of 10000
individuals, in order to make the best use of the card. Unfortunately,
even recent MOEAs, such as NSGA3 [5], are not designed for this
kind of population size: as our tests show, NSGA3 requires in av-
erage 27s/generation for 10000 individuals and to 270s/generation
for 100000 individuals, which is the order of magnitude that future
cards will enable, when Moore’s law is expected to stop about 10
years from now.

We propose a very fast evolutionary algorithm, named FastEMO,
to solve the aforementioned issue. In order to make it easy to use
and cross-platform, we integrated FastEMO in the EASEA (EAsy
Specification of Evolutionary Algorithms) platform1. EASEA is a
publicly available platform, designed to simplify the development of
evolutionary algorithms. The main concept of EASEA is the use of a
unified approach for describing all the evolutionary algorithms by a
single general architecture with a flexible parameter configuration
[2], [3]. FastEMO is now available in the EASEA platform.

The paper is organised as follows: Section 2 defines the proposed
algorithm. Section 3 specifies the experiments, performed to evalu-
ate this proposal. Section 4 reports the results of these experiments.
Section 5 concludes this work.

2 PROPOSED ALGORITHM
FastEMO (Fast Evolutionary Multi-Objective Algorithm) has been
designed to support very large population sizes while still offering
the best quality Pareto front (PF) in 2 or 3 objective problems.

FastEMO relies on the original structure of the ASREA [16] algo-
rithm. ASREA ensures good convergence by creating a stochastic
PF thanks to a small limited archive set of non-dominated solutions.

Like ASREA, this approach uses the following features:

• three populations sets: the parent population set, the archive
population set and the offspring population set,

• a small sized limited archive of non-dominated solutions,
• a crowding distance mechanism for updating the archive,
• genetic variation operators (selection, crossover, mutation)
for creating new solutions.

Aiming to improve on diversity preservation and convergence rate
towards the PF, we have made the following modifications com-
pared with ASREA:

• parent selection strategy for mating pool (for better conver-
gence),

• parent population replacement strategy (for faster conver-
gence rate towards the PF),

• specific genetic operations strategy (for better convergence
and diversity),

• parent population size equal to archive size (for better con-
vergence and speedup),

1http://easea.unistra.fr/

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

GECCO ’19, July 13–17, 2019, Prague, Czech Republic

• variable sized archive which increases on the last generation
(to obtain a larger number of solutions),

• removal of a separate ranking assignment procedure by in-
cluding domination checking into the archive update proce-
dure.

We use the following terminology:
• N: initial population size,
• A: archive population size for all generations, except for the
last one,

• Omin : minimal current offspring population size for taking
part in the parent selection procedure (proposed min value
is 4), to improve diversity.

• Amax : archive population size for the last generation (pro-
posed max value is 10000),

• i-pop: initial population set with size = N,
• p-pop: parent population set with size =N for first generation.
Then, parent population size is adjusted to archive size = A,

• o-pop: offspring population set with size = N,
• a-pop: archived population set with size = A,
• r-pop: result population set with size = Amax ,
• oi : iterator for individuals in o-pop,
• ai : iterator for individuals in a-pop.

The algorithm is described below :
The algorithm begins with a random initialization of the initial

population (i-pop) in the required search space. Then this population
is copied into the first parent population set (p-pop) with size N and
every individual is evaluated. The archive that saves non-dominated
solutions (a-pop) is empty. In the next step, the main loop of the
algorithm starts, by checking for a stopping criteria (a number of
generations). If met, the algorithm stops. Otherwise, a new offspring
population (o-pop) is created as described in the next subsection.
After the first generation, p-pop size is reduced to archive size.
When the number of generations has reached its maximum value,
the archive size is set to Amax .

2.1 Creation of the offspring population
2.1.1 Parent selection strategy. In ASREA [16] parents are ran-

domly selected from p-pop, which consists of a-pop and the previous
o-pop. Instead, for efficiently guiding the search process towards
the PF, FastEMO uses a higher selection pressure than ASREA : only
non-dominated solutions from p-pop and the best solutions from
current o-pop (which is going to be created) are introduced in the
offspring producing procedure. In this approach, the mating pool
is generated by two different selection operators for parent 1 and
parent 2. Parent 1 is selected by a binary tournament from p-pop.
For parent 2, if the current o-pop size is less than Omin (proposed
value = 4), parent 2 is also selected from p-pop by a binary tourna-
ment selection. Otherwise, it is selected as the best individual from
the current o-pop. This strategy helps overcoming two important
challenges:

• Avoiding premature convergence, by selecting parents from
different solutions,

• Achieving a selection bias towards the most promising so-
lutions; it is specially useful in some of the MOPs, which
have a small number of non-dominated solutions in earlier
generations (like ZDT2[11]).

Result: r-pop
Define N, A, Amax
Generate i-pop, empty a-pop, r-pop and p-pop
Calculate fitness values for every individual in i-pop
Copy i-pop to p-pop (size N)
while stopping criterion is not met do

while o-pop is not full do
Select parent 1 from p-pop by binary tournament
selection
if if o-pop size < Omin then

Select parent 2 from p-pop by binary tournament
selection

else
Select parent 2 as best individual from current
o-pop

end
Apply BLX-α Crossover on selected parents
Apply Gaussian Mutation on offspring
Evaluate offspring
Add offspring to o-pop

end
if last generation then

Resize a-pop from A to Amax
end
Update a-pop by checking dominance and using crowding
distance diversity mechanism (see Algorithm 2)
if first generation then

Resize p-pop from N to A
end
Best Random Replacement p-pop (size A) by individuals
from a-pop (see Algorithm 3)

end
Copy solutions from a-pop to r-pop

Algorithm 1: FastEMO pseudo code

This way, the performance is maintained during all generations.

2.1.2 Genetic operator strategy. Once the mating parents are
selected, genetic operators are applied to create a new offspring for
o-pop.

Crossover. In this approach, for the crossover operation, we use
the Blend Crossover Operator (BLX-α) [10]. Blend-α crossover cre-
ates a new offspring by selecting a random value from the interval
between vector’s elements of two parents.

Formally, this crossover operator generates an offspring as a
random linear recombination of two parents s1 and s2.

If s1i < s2i , a uniformly distributed random value is generated
from the interval:

[s1i − (s2i − s1i) · α , s2i + (s
2
i − s1i) · α] (2)

Otherwise,

[s2i − (s1i − s2i) · α , s1i + (s
1
i − s2i) · α] (3)

As shown in equations (2) and (3) above, the BLX-α operator has
two important features : the location of the offspring depends on the
difference in parent solutions and the interval of possible locations is
manageable (increased in direction of the parent with better fitness

Fast Evolutionary Multi-objective Optimization Algorithm
(FastEMO) GECCO ’19, July 13–17, 2019, Prague, Czech Republic

by α value). We use these features of the operator for organizing
an adaptive search, suitable for many MOPs. The α factor of the
crossover was chosen by searching the optimum results obtained
with different α values on multiple test problems. The best results
for all test problems were obtained with value of α = .75, which
was fixed for all experiments.

Mutation. To improve the diversity preservation technique, we
propose to apply a Gaussian mutation mechanism [4]. The Gaussian
distribution is the basis of the Gaussian mutation operator. It adds
noise to each element of a solution’s vector to create a new offspring:

x ′ = x + σ · N (0, 1), (4)

where σ is a mutation rate.
Parametric tests revealed that the Gaussian mutation ensures the

best results with a value of σ equals to 0.5. The Gaussian mutation
operator is used because it satisfies the three main requirements
for mutation operators:

• it is covering the whole solution space (ergodicity),
• it does not show drift and does not favour a specific direction
because of the symmetry of the Gaussian distribution,

• it can scale the randomly drawn samples in the whole solu-
tion space with σ .

a) Gaussian mutation b) Polynomial mutation

Figure 1: FastEMO with Gaussian and Polynomial mutation
operator onZDT4 function (population size = 10000, number
of generations = 11)

Compared to Polynomial mutation, the Gaussian mutation pro-
vides better diversity by better covering the solution space, as
shown in Figure 1.

2.2 Archive update strategy
As in ASREA, FastEMO uses a limited archive [14] to retain only
non-dominated solutions of a current generation in the next gener-
ation. But for FastEMO, the strategy is different, as illustrated in
the pseudo-code of Algorithm 2.

In order to avoid unnecessary ranking assignment storage, two
operations are included in the archive update procedure: dominance
check and copy of the new best solutions (genome and objective
function values) into a-pop.

If the archive has reached its maximum size, the crowding dis-
tance control is applied to handle the overflow of a-pop, aiming to
maintain the diversity of solutions. Actually, a crowding distance
density estimator is used to provide well diversified solutions across
the PF in NSGA2 [6] and ASREA. But it has been shown in [13], that

Result: insert/reject new individual in/from a-pop
oi = index of current offspring individual
ai = 0
while ai < A do

if a new o-pop[oi] is dominated by a new a-pop[ai] then
reject new individual and go to next one from o-pop

else
if a-pop[ai] is dominated by o-pop[oi] then

remove dominated individual from a-pop
else

increment ai : go to next individual in a-pop
end

end
Add the new individual into archive;
if a-pop size = A+1 then

if last generation = true then
return

end
Find the worst individual in a-pop by crowding
distance
Delete the worst individual from a-pop

end
end

Algorithm 2: Update a-pop

the crowding distance operator used in NSGA2, does not work well
with more than two objectives. As well, during the 3-objectives
experiments, ASREA shows a global decrease in the size of the
objective space covered by an approximation set (see HV value for
DTLZ1 and DTLZ3 benchmarks in Table 4 and Figure 3 column c)).

In FastEMOwe successfully promote solutions diversity by jointly
using a Gaussian distribution for the mutation operator and crowd-
ing distance control for a-pop. As was mentioned above, to obtain
a larger amount of solutions, we change the size of the archive
to Amax on the last generation in Algorithm 1. When this size is
reached, Algorithm 2 stops.

The optimal a-pop size is fixed as 15m (wherem is the number of
objectives), which is a little bit larger than in ASREA. This archive
size does not increase the computation complexity and it is enough
to maintain a good population diversity (see results of experiments
in Table 4).

2.3 Best Random Replacement strategy
As explained in subsection 2.1.1, a strong selection pressure is used
in FastEMO to push the next population towards the PF. For the
same reason, the replacement of the parent population is based on
a random selection from the best solutions of the archive set. The
pseudo-code of the replacement strategy is given in Algorithm 3.

Result: new p-pop
Clear p-pop
while While p-pop is not full do

Randomly select one individual from a-pop
And copy one it to p-pop

end
Algorithm 3: Best Random Replacement p-pop

GECCO ’19, July 13–17, 2019, Prague, Czech Republic

3 EXPERIMENTS
In order to evaluate the potential of the proposed algorithm for
solving different multi-objective problems and to tune its parame-
ters. It was first tested on several generic MOPs benchmark. The
setting parameters of FastEMO for all test functions are provided
in Table 1 below.

Table 1: Parameters of FastEMO

Parameter Value

Size of archive 15·m, m is the num. of objectives
Crossover probability .9
Crossover alpha factor .75
Mutation probability 1/n, n is the num. of variables

Mutation rate .5

To assess the relative performance of FastEMO, compared to
other algorithms, it is pitted against five representative MOEAs :
NSGA2 [6], NSGA3 [5], ASREA [16], PAES [12] and ESPEA [1]. The
comparative details of these algorithms are presented in Table 3.
We use the Java jMetal [8] framework for running NSGA2, NSGA3,
PAES and ESPEA. Algorithms ASREA and FastEMO are executed
in the EASEA platform.

In order to compare the quality of the MOEAs, 20 runs of each
algorithms with different initial populations were performed for
each problem to accurately assess the mean of the performance.
The number of generations is defined as the termination criterion.
All the experiments have been conducted on the same Intel(R)
Pentium(R) CPU 4405U @ 2.10GHz 4 processors laptop.

3.1 Benchmark Suite
All chosen algorithms were tested and compared on five 2-objective
ZDT [11] and on five 3-objective DTLZ [7] benchmarks. The char-
acteristics of the tests are represented on Table 2.

Table 2: Characteristics of the benchmark problems

Problem Pop. size Nb. of dim. Nb. of obj. Nb of gen.
ZDT1 10000 30 2 10
ZDT2 10000 30 2 10
ZDT3 10000 30 2 10
ZDT4 10000 10 2 13
ZDT6 10000 30 2 10
DTLZ1 10000 20 3 50
DTLZ2 10000 30 3 50
DTLZ3 10000 30 3 50
DTLZ4 10000 30 3 50
DTLZ7 10000 30 3 50

3.2 Performance Metrics
In order to assess the performance for each algorithm the runtime
(RT) is measured as well as two of the most used quality indicators
from[15]:

(1) Hypervolume (HV)maximisation[19]: it provides the volume
of the objective space that is dominated by a PF, therefore,
it shows the convergence quality towards the PF and the
diversity in the obtained solutions set,

(2) Inverted Generational Distance (IGD) minimization [17]: it is
an inverted variation of Generational Distance that: i) calcu-
lates the minimum Euclidean distance between an obtained
solution and the real PF and ii) measures both the diversity
and the convergence towards the PF of the obtained set (if
enough members of PF are known [18]).

4 RESULTS AND DISCUSSION
Table 4, 5 and Figure 3, 2 show the results:

On 2-objectives functions: FastEMO and ESPEA provide the
best convergence towards the PF and PF width, with similar values
of HV and IGD compared to NSGA2, NSGA3, ASREA and PAES.
However, FastEMO is 14 to 50 times faster than ESPEA.

On 3-objectives functions: FastEMO is the best algorithm, ex-
cept for DTLZ3, where NSGA3 is the winner. However, it must
be considered that NSGA3 is more than 100 times slower than
FastEMO, as it uses 1305s compared to 11s for FastEMO. If we
increase the number of generation to 150, FastEMO converges to-
wards the PF with the best value of HV = .453 in 25s, which is
still 52 times faster than NSGA3 on 50 generations and 162 times
faster than NSGA3 in 150 generations. In the other 3-objectives test
functions, the values of HV and IGD for NSGA3 and FastEMO are
similar, but FastEMO is in average 120 times faster than NSGA3.
The obtained fronts for DTLZ1, DTLZ3, DTLZ6 functions are shown
in Figure 3. FastEMO provides more solutions and ensures better
diversity than the other algorithms. The results of ESPEA on 3-
objectives tests are not provided in the Table 4, because no result
was obtained in less than 1h on the jMetal framework.

Figure 2: One generation runtime comparison for 6 algo-
rithms on DTLZ2 test function

Table 5 and Figure 2 shows the runtime value for one generation
versus population size for each algorithm on the very fast DTLZ2

Fast Evolutionary Multi-objective Optimization Algorithm
(FastEMO) GECCO ’19, July 13–17, 2019, Prague, Czech Republic

Table 3: Comparison of MOEAs

MOEA Fitness assignment Elitism Strategy Archive Strengths Weakness
of diversity

NSGA2 [6] Deterministic Yes Crowding No Good convergence High computation
ranking procedure distance towards PF complexity

NSGA3 [5] Deterministic Yes Vector based No Good convergence High computation
ranking procedure niching towards PF complexity,slow by

for > 2 obj. niching selection
ASREA [16] Stochastic ranking Yes Crowding Yes Cut down Bad convergence

procedure distance computation complexity for > 2 obj.
PAES [12] Pareto dominance Yes Cell-based Yes Cut down Depends on cell sizes

ranking procedure density computation complexity and number of obj.
ESPEA [2] Preference Yes Crowding Yes Good quality High computation

based procedure distance complexity for > 3 obj.

Table 4: Results comparison on the performance metrics

Problem Metrics FastEMO ASREA NSGA2 NSGA3 PAES ESPEA
ZDT1 HV 0.667 0.375 0.007 0.623 0.586 0.665

IGD 2.2e-05 0.006 0.021 0.001 0.005 1.0e-05
Runtime (s) 1.898 5.434 8.552 12.015 19.250 26.528

ZDT2 HV 0.332 0.0 0.0 0.295 0.199 0.332
IGD 1.5e-05 0.021 0.049 0.001 0.008 1.3e-05

Runtime (s) 1.837 5.200 8.615 11.892 19.210 28.581
ZDT3 HV 0.517 0.364 0.053 0.469 0.486 0.516

IGD 3.0e-05 0.003 0.014 0.001 0.002 8.7e-06
Runtime (s) 0.980 5.139 8.917 15.895 19.009 25.601

ZDT4 HV 0.633 0.090 0.0 0.623 0.364 0.656
IGD 6.3e-04 0.021 0.112 0.001 0.011 2.2e-04

Runtime (s) 0.507 6.512 8.811 16.035 1.542 26.209
ZDT6 HV 0.405 0.0 0.0 0.455 0.309 0.400

IGD 3.1e-05 0.012 0.141 0.001 0.009 1.1e-05
Runtime (s) 1.598 5.029 8.804 12.260 18.607 25.758

DTLZ1 HV 0.772 0.0 0.0 0.786 0.454
IGD 4.7e-04 0.053 0.615 4.4e-04 0.003

Runtime (s) 5.638 28.900 890.851 1138.203 46.522 >3600
DTLZ2 HV 0.450 0.425 0.447 0.413 0.242

IGD 2.2e-04 5.8e-04 1.8e-04 5.9e-04 0.002
Runtime (s) 13.171 29.290 928.466 1369.675 95.214 >3600

DTLZ3 HV 0.0 0.0 0.0 0.413 0.121
50 gen. IGD 0.286 0.7661 4.881 9.6e-04 0.010

Runtime (s) 11.064 30.402 916.747 1305.272 27.244 >3600
DTLZ3 HV 0.453 0.297 0.0 0.413 0.227
150 gen. IGD 4.2e-04 0.002 0.886 9.6e-04 0.006

Runtime (s) 25.951 91.670 2927.695 4050.123 216.507 >3600
DTLZ4 HV 0.434 0.415 0.0 0.406 0.0

IGD 5.4e-04 5.5e-04 0.017 6.8e-04 0.009
Runtime (s) 11.286 30.975 546.619 1412.159 28.241 >3600

DTLZ7 HV 0.324 0.294 0.262 0.291 0.083
IGD 7.8e-04 0.001 0.002 0.002 0.020

Runtime (s) 12.957 31.720 942.500 1032.572 176.639 >3600

GECCO ’19, July 13–17, 2019, Prague, Czech Republic

ZDT2
a) PF b) FastEMO 1.8s c) ASREA 5.4s d) NSGA2 8.5s e) NSGA3 12.0 s f) ESPEA 26.5 s

ZDT3
a) PF b) FastEMO 0.9s c) ASREA 5.1s d) NSGA2 8.6s e) NSGA3 15.8s f) ESPEA 25.6

ZDT4
a) PF b) FastEMO 0.5s c) ASREA 6.5s d) NSGA2 8.8s e) NSGA3 16.0s f) ESPEA 26.2s

ZDT6
a) PF b) FastEMO 1.6s c) ASREA 5.0s d) NSGA2 8.8s e) NSGA3 12.2s f) ESPEA 25.7s

DTLZ1
a) PF b) FastEMO 5.3s c) ASREA 28.9s d) NSGA2 890.8s e) NSGA3 1138.2s f) ESPEA >3600s

DTLZ2
a) PF b) FastEMO 13.2s c) ASREA 29.3s d) NSGA2 928.4s e) NSGA3 1369.6s f) ESPEA > 3600s

DTLZ3
150 gen. a) PF b) FastEMO 25.9s c) ASREA 91.6s d) NSGA2 2927.7s e) NSGA3 4050.1s f) ESPEA >6000s

DTLZ7
a) PF b) FastEMO 12.9s c) ASREA 31.7s d) NSGA2 942.5s e) NSGA3 1032.5s f) ESPEA >6000s

Figure 3: Approximation sets of the five algorithms on different benchmarks

Fast Evolutionary Multi-objective Optimization Algorithm
(FastEMO) GECCO ’19, July 13–17, 2019, Prague, Czech Republic

test function (only 4.10−3s evaluation time). FastEMO is signifi-
cantly faster than all other algorithms.

Table 5: One generation runtime on DTLZ2

Algorithm 100 1000 10000 100000
FastEMO 0.0010 s 0.013 s 0.16 s 3.9 s
ASREA 0.0012 s 0.024 s 0.62 s 65.52
NSGA2 0.023 s 0.200 s 21.25 s 230.42
NSGA3 0.233 s 2.100 s 26.28 s 270.76
PAES 0.009 s 0.051 s 1.50 s 17.10 s
ESPEA 0.012 s 0.055 s 250.10 s 580.41 s

5 CONCLUSION
This paper describes a new fast multi-objective optimization algo-
rithm called FastEMO. It is suitable for the large population sizes
that can be evaluated on modern massively parallel machines as
well as for smaller populations. Based on the structure of ASREA,
this approach proposes a much simpler architecture, which only
computes a small Pareto Front limited to the size of the archive.
During the computation:

(1) the size of the parent population is reduced to the size of
archive,

(2) parents are selected from both the archive and from the
growing offspring population,

(3) on the last generation, the archive is increased to obtain
more non-dominated solutions.

This algorithm outperforms well-known MOEAs, such as NSGA2,
NSGA3, PAES, ESPEA and ASREA not only in runtime (with an
O(man) complexity) but also in quality, for both 2 and 3 objective
problems.

Future work will focus on parallelizing FastEMO on GPGPU
cards as well as exploring its efficiency on more than 3 objectives
problems.

Due to the limited number of pages of this paper, more bench-
mark tests are available on:
http://easea.unistra.fr/index.php/EASEA_papers

REFERENCES
[1] Marlon Alexander Braun, Pradyumn Kumar Shukla, and Hartmut Schmeck. 2015.

Obtaining optimal pareto front approximations using scalarized preference infor-
mation. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary
Computation. ACM, 631–638.

[2] Pierre Collet, Evelyne Lutton, Marc Schoenauer, and Jean Louchet. 2000. Take
it EASEA. In International Conference on Parallel Problem Solving from Nature.
Springer, 891–901.

[3] Pierre Collet and Marc Schoenauer. 2003. GUIDE: Unifying evolutionary en-
gines through a graphical user interface. In International Conference on Artificial
Evolution (Evolution Artificielle). Springer, 203–215.

[4] Kalyanmoy Deb and Debayan Deb. 2014. Analysing mutation schemes for real-
parameter genetic algorithms. International Journal of Artificial Intelligence and
Soft Computing 4, 1 (2014), 1–28.

[5] Kalyanmoy Deb and Himanshu Jain. 2014. An evolutionary many-objective
optimization algorithm using reference-point-based nondominated sorting ap-
proach, part I: Solving problems with box constraints. IEEE Trans. Evolutionary
Computation 18, 4 (2014), 577–601.

[6] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A
fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on
evolutionary computation 6, 2 (2002), 182–197.

[7] Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler. 2002. Scal-
able multi-objective optimization test problems. In Evolutionary Computation,
2002. CEC’02. Proceedings of the 2002 Congress on, Vol. 1. IEEE, 825–830.

[8] Juan J Durillo and Antonio J Nebro. 2011. jMetal: A Java framework for multi-
objective optimization. Advances in Engineering Software 42, 10 (2011), 760–771.

[9] Goldberg D. E. 1989. Genetic algorithms in search, optimization and machine
learning. Addison-Wesley.

[10] Larry J Eshelman and J David Schaffer. 1993. Real-coded genetic algorithms and
interval-schemata. In Foundations of genetic algorithms. Vol. 2. Elsevier, 187–202.

[11] Deb Kalyanmoy et al. 2001. Multi objective optimization using evolutionary
algorithms. John Wiley and Sons.

[12] Joshua D Knowles and David W Corne. 2000. Approximating the nondominated
front using the Pareto archived evolution strategy. Evolutionary computation 8, 2
(2000), 149–172.

[13] Saku Kukkonen and Kalyanmoy Deb. 2006. Improved pruning of non-dominated
solutions based on crowding distance for bi-objective optimization problems. In
Evolutionary Computation, 2006. CEC 2006. IEEE Congress on. IEEE, 1179–1186.

[14] Mahesh B Patil. 2018. Using External Archive for Improved Performance in
Multi-Objective Optimization. arXiv preprint arXiv:1811.09196 (2018).

[15] Nery Riquelme, Christian Von Lücken, and Benjamin Baran. 2015. Performance
metrics in multi-objective optimization. In Computing Conference (CLEI), 2015
Latin American. IEEE, 1–11.

[16] Deepak Sharma and Pierre Collet. 2010. An archived-based stochastic ranking
evolutionary algorithm (ASREA) for multi-objective optimization. In Proceedings
of the 12th annual conference on Genetic and evolutionary computation. ACM,
479–486.

[17] David A Van Veldhuizen and Gary B Lamont. 2000. Multiobjective evolutionary
algorithms: Analyzing the state-of-the-art. Evolutionary computation 8, 2 (2000),
125–147.

[18] Qingfu Zhang, Aimin Zhou, and Yaochu Jin. 2008. RM-MEDA: A regularity model-
based multiobjective estimation of distribution algorithm. IEEE Transactions on
Evolutionary Computation 12, 1 (2008), 41–63.

[19] Eckart Zitzler and Lothar Thiele. 1999. Multiobjective evolutionary algorithms: a
comparative case study and the strength Pareto approach. IEEE transactions on
Evolutionary Computation 3, 4 (1999), 257–271.

	Abstract
	1 Introduction
	2 PROPOSED ALGORITHM
	2.1 Creation of the offspring population
	2.2 Archive update strategy
	2.3 Best Random Replacement strategy

	3 EXPERIMENTS
	3.1 Benchmark Suite
	3.2 Performance Metrics

	4 RESULTS AND DISCUSSION
	5 CONCLUSION
	References

